Do Black Holes End up as Quark Stars ?
نویسنده
چکیده
The possibility of the existence of quark stars has been discussed by several authors since 1970. Recently, it has been pointed out that two putative neutron stars, RXJ 1856.5-3754 in Corona Australis and 3C58 in Cassiopeia are too small and too dense to be neutron stars; they show evidence of being quark stars. Apart from these two objects, there are several other compact objects which fit neither in the category of neutron stars nor in that of black holes. It has been suggested that they may be quark stars.In this paper it is shown that a black hole cannot collapse to a singularity, instead it may end up as a quark star. In this context it is shown that a gravitationally collapsing black hole acts as an ultrahigh energy particle accelerator, hitherto inconceivable in any terrestrial laboratory, that continually accelerates particles comprising the matter in the black hole. When the energy E of the particles in the black hole is ≥ 10 2 GeV, or equivalently the temperature T of the matter in the black holes is ≥ 10 15 K, the entire matter in the black hole will be converted into quark-gluon plasma permeated by leptons. Since quarks and leptons are spin 1/2 particles,they are governed by Pauli's exclusion principle. Consequently, one of the two possibilities will occur; either Pauli's exclusion principle would be violated and the black hole would collapse to a singularity, or the collapse of the black hole to a singularity would be inhibited by Pauli's exclusion principle, and the black hole would eventually explode with a mini bang of a sort. After explosion, the remnant core would stabilize as a quark star.
منابع مشابه
Can stellar mass black holes be quark stars?
We investigate the possibility that stellar mass black holes, with masses in the range of 3.8M⊙ and 6M⊙, respectively, could be in fact quark stars in the Color-Flavor-Locked (CFL) phase. Depending on the value of the gap parameter, rapidly rotating CFL quark stars can achieve much higher masses than standard neutron stars, thus making them possible stellar mass black hole candidates. Moreover,...
متن کاملar X iv : a st ro - p h / 00 11 18 3 v 1 9 N ov 2 00 0 1 POPULATION SYNTHESIS OF NEUTRON STARS , STRANGE ( QUARK ) STARS AND BLACK HOLES
We compute and present the distribution in mass of single and binary neutron stars, strange stars, and black holes. The calculations were performed using a stellar population synthesis code. We follow all phases of single and binary evolution, starting from a ZAMS binary and ending in the creation of one compact object (neutron star, black hole, strange star) and a white dwarf, or two compact o...
متن کاملPopulation Synthesis of Neutron Stars, Strange (quark) Stars and Black Holes
We compute and present the distribution in mass of single and binary neutron stars, strange stars, and black holes. The calculations were performed using a stellar population synthesis code. We follow all phases of single and binary evolution, starting from a ZAMS binary and ending in the creation of one compact object (neutron star, black hole, strange star) and a white dwarf, or two compact o...
متن کاملv 2 2 8 N ov 1 99 9 Where Are The Young Pulsars ?
We show that young pulsars with normal magnetic fields, which are born as fast rotating neutron stars (NSs) in Type II/Ib supernova explosions, can slow down quickly by relativistic particles emission along their magnetic axis. When they slow down sufficiently, they can undergo phase transitions and collapse to strange stars, quark stars or black holes in explosions that remove a substantial fr...
متن کاملar X iv : a st ro - p h / 02 01 11 4 v 1 8 J an 2 00 2 Binary coalescence of a strange star with a black hole : Newtonian results .
We present Newtonian three–dimensional hydrodynamical simulations of the merger of quark stars with black holes. The initial conditions correspond to non-spinning stars in Keplerian orbits, the code includes gravitational radiation reaction in the quadrupole approximation for point masses. We find that the quark star is disrupted, forming transient accretion structures around the black hole, bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007